首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   45篇
  2021年   6篇
  2020年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   22篇
  2010年   10篇
  2009年   14篇
  2008年   12篇
  2007年   12篇
  2006年   16篇
  2005年   8篇
  2004年   9篇
  2003年   15篇
  2002年   12篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   9篇
  1997年   12篇
  1996年   4篇
  1995年   4篇
  1994年   10篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1966年   2篇
  1946年   1篇
  1934年   1篇
  1932年   1篇
  1931年   8篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
91.
A lysed cell system was developed to determine whether tubulin antibody can block the nucleation of exogenous tubulin at kinetochores and centrosomes. Mitotic PtK2 cells were pretreated with colcemid to remove all endogenous microtubules and were lysed with Triton X-100 in PIPES-EGTA-Mg++ buffer. This procedure left centrosomes, chromosomes, and kinetochores intact as determined by electron microscopy of thin-sectioned cells. Exposure of the lysed cells to phorphocellulose-purified tubulin dimers at 37 degrees C in the presence of 1 mM GTP resulted in site-specific nucleation of microtubules at centrosomes and kinetochores. Treatment of the lysed cell preparations with tubulin antibody before subsequent exposure to the exogenous tubulin resulted in almost complete blockage of microtubule nucleation, especially at kinetochores. Pretreatment of the lysed cell preparations with control antibody or buffer without antibody had no effect on the ability of centrosomes and kinetochores to initiate microtubule assembly. The implications of these results with respect to the molecular composition of centrosomes and kinetochores are discussed.  相似文献   
92.
93.
Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity.  相似文献   
94.

Background

The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage.

Methodology/Principal Findings

In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets.

Conclusions/Significance

GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.  相似文献   
95.
The small but morphologically diverse subfamily Barnadesioideae of the sunflower family, Asteraceae, is of special interest as it constitutes the sister-group to the rest of the family. Therefore it is of critical importance for elucidating the origin and early evolution of Asteraceae. Cladistic analyses of DNA sequence variation in the trnL intron and nuclear ribosomal ITS regions strongly support five major clades in the subfamily: Schlechtendalia, Chuquiraga-Doniophyton, Barnadesia-Huarpea, Dasyphyllum subgenus Dasyphyllutn and a clade comprising Dasyphyllum subgenus Archidasyphyllum, Arnaldoa and Fulcaldea. Within Dasyphyllum subgenus Dasyphyllum, D. hystrix has a basal position, and sect. Macrocephala is supported as monophyletic, while sect. Microcephala lacks jackknife support. Within Barnadesia, B. parviflora has a very divergent ITS sequence and a basal position in the genus. The phylogenetic trees make some sense of the great morphological variation within the subfamily, although some clades identified here lack obvious defining morphological characteristics. Optimisation of geographical distributions onto the molecular phylogenies shows that the Barnadesioideae most likely originated in southern South America.  相似文献   
96.
97.
Hemangiomas are benign neoplasms of the vasculature frequently encountered in children. Several studies have shown that these tumors are characterized by excessive angiogenesis. Although benign, the lesions can present with complications, and may thus require treatment. There are multiple therapeutic options available for patients with problematic or life threatening hemangiomas, some of which have serious side effects. Randomized clinical trials and evidence-based studies on the efficacy of these treatments is still lacking. The recognition that excessive angiogenesis underlies hemangiogenesis offers an opportunity for the development of safer therapeutic strategies that are based on the inhibition of angiogenesis. We review medical therapies currently employed in the management of hemangiomas and the role of angiogenesis inhibition in hemangioma therapy.  相似文献   
98.
A mitral allograft is used exceptionally in the mitral, as well as in the tricuspid position, mostly as an experimental surgical procedure. The authors decided to evaluate the possibility of inserting a cryopreserved mitral allograft into the tricuspid position in a sheep experimental model. Within the framework of this experimental project the mechanical properties of the cryopreserved mitral allograft were tested. A novel methodology studying the functional unit composed of mitral annulus, leaflet, chordae tendinaea, and papillary muscle is presented. A five-parameter Maxwell model was applied to characterize the viscoelastic behavior of sheep mitral valves. A control group of 39 fresh mitral specimens and a test group of 13 cryopreserved mitral allografts from tissue bank were tested. The testing protocol consisted of six loading cycles with 1 mm elongation every 5 min. There was no significant difference in the mean values of the determined parameters (p>0.05) which confirms the main hypothesis that cryopreservation does not influence significantly material parameters characterizing the tissue mechanics. Slight discrepancy is observed in variances of viscous parameters suggesting that the values of the test group may be spread over larger interval due to the treatment.  相似文献   
99.
Glycation, or nonenzymatic glycosylation, is a chemical reaction between reactive carbonyl-containing compounds and biomolecules containing free amino groups. Carbonyl-containing compounds include reducing sugars such as glucose or fructose, carbohydrate-derived compounds such as methylglyoxal and glyoxal, and nonsugars such as polyunsaturated fatty acids. The latter group includes molecules such as proteins, DNA, and amino lipids. Glycation-induced damage to these biomolecules has been shown to be a contributing factor in human disorders such as Alzheimer''s disease, atherosclerosis, and cataracts and in diabetic complications. Glycation also affects Escherichia coli under standard laboratory conditions, leading to a decline in bacterial population density and long-term survival. Here we have shown that as E. coli aged in batch culture, the amount of carboxymethyl lysine, an advanced glycation end product, accumulated over time and that this accumulation was affected by the addition of glucose to the culture medium. The addition of excess glucose or methylglyoxal to the culture medium resulted in a dose-dependent loss of cell viability. We have also demonstrated that glyoxylase enzyme GloA plays a role in cell survival during glycation stress. In addition, we have provided evidence that carnosine, folic acid, and aminoguanidine inhibit glycation in prokaryotes. These agents may also prove to be beneficial to eukaryotes since the chemical processes of glycation are similar in these two domains of life.One factor that may affect the long-term survival of bacterial cells in a population is the level of damage incurred by macromolecules via the nonenzymatic process of glycation, first described by Louis-Camille Maillard (16). The Maillard reaction is responsible for the formation of several compounds identified as advanced glycation end products (AGEs) (9). In vivo this reaction appears to play a role in the aging process, as it leads to slow degradation of molecules. The principal mechanisms of glycation-related damage involve cross-links between proteins and/or DNA, modifying or destroying their functional properties (2, 8, 38). Most studies of glycation have been performed with eukaryotes because of its relationship to aging and disorders such as Alzheimer''s disease and diabetes (6, 21, 30, 42). However, several studies (32, 33) have shown that glycation also takes place in Escherichia coli, affecting protein and DNA of this prokaryote.Many biochemical pathways produce reactive dicarbonyl intermediates, such as glyoxal and methylglyoxal (MG), which can further react with DNA, proteins, or other biomolecules to form AGEs (8, 36). Reaction of glucose with amino groups of proteins and subsequent formation of reactive dicarbonyls via a series of reactions involving Schiff base and Amadori product intermediates have been well documented (40). Methylglyoxal can be formed by spontaneous decomposition of glycolytic triose phosphates such as dihydroxyacetone phosphate (DHAP) (1) or can be produced enzymatically from DHAP by the E. coli enzyme methylglyoxal synthase (MgsA) (12). MG synthesis usually requires an environment low in phosphate and high in DHAP, a situation that occurs most frequently under high-glucose conditions (25, 26). If MG is not degraded, MG accumulation will lead to cell death (12). E. coli maintains pathways for the detoxification of methylglyoxal, including glyoxalase enzymes I and II (encoded by gloA and gloB, respectively), which convert MG to S-lactoyl glutathione and then to d-lactate (12). This system has been proposed to be the predominant MG detoxification system in E. coli (12, 29).Glyoxal is also a toxic dicarbonyl compound capable of damaging cells via AGE formation. One of the AGEs formed in the presence of glyoxal is carboxymethyl lysine (CML), which has been used extensively as a biomarker for aging (11, 20, 31, 39). CML can be formed by different pathways: glucose can be oxidized to glyoxal, which can react with protein to form CML (1, 17); glucose can also react with protein to form fructoselysine (an Amadori product), which can undergo oxidative cleavage to form CML (1). In this study, we investigated CML formation in E. coli growing under standard and glycation-prone laboratory conditions. Since AGE formation may negatively affect cell survival and reproduction during long-term batch culture (35), we hypothesized that CML would accumulate in these cultures as cells progress through stationary phase.One product that may interfere with AGE formation is carnosine (β-alanyl-l-histidine), a naturally occurring dipeptide in many organisms. Although its mechanism of action has not been fully determined, there is evidence that both the free amino group derived from the β-alanine and the imidazole ring of histidine compete with amino groups of proteins in the presence of reactive dicarbonyl compounds (7, 24). In this study we designed assays to determine the effect of carnosine (and other compounds) on survival of cultures of E. coli under a variety of experimental conditions. Additionally, since strains lacking glyoxalase enzymes I and II have a reduced ability to detoxify methylglyoxal, we hypothesized that gloA and/or gloB mutants would require larger amounts of carnosine than would wild-type strains to survive in the presence of this toxic electrophile.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号